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1. INTROBUCTION

In this paper we present a general class of
gplines. MWe shall show that some Knowr splines are
special cases of these splines. 0f particuliar
interest, however, is the subclass of these splines
that is local and interpolating.

The spline will be presented in a parametric
form:

Fa)=10x,(8), x, (&), . . .]

For the purpose of the mathematics it 1is only
necessary to consider one component, say x{s), since
the others are treated in the same way.

For the purpose of this paper wWe use the
following terminologys
(i) Defining points: a set of ordered data points p;
that are evenly spaced in 4. In our examples we
shall usually use two dimensians.
(i1) Splines A piscewise function wWith preset
properties of continuity and differentiability.
(i11) Interpolating spline: a spline that passes
through its defining points.
{iv) Approximating splines: a spline that may not pass
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through its defining points.

(v} Local spline: a spline that changes in a finite
interval when one of Iits defining points is
changead,

(vi) Cardinal functiont a function that is 1 at some
khot, B at all other knots and can be anything in
betusen the other knots., It satisfies F,(»)=d,,

2. THE MODEL

Consider two functions of & x,(s) and x,(s). The
average function F(s)=(x,(s)+x,(s))/2 is a function
that for each & passes midway between the tuwo given
functions. UWe may also assign different ueights and
have

F (8) @ (1%, (8) +1i;%, (8) } 7 (i +u,)

thus emphasizing the effect of one function over the
other. This is merely a weighted average of x, and x,.
Finally this can be extended to make w a function of »
thus varying the ueight on the x's as we vary s, Also
the number of functions can be Increased and the model
of the spline uill then be

(1) F (o) =3, (8) 1w, (8} 7 S, ()
The w;(»)/72u,(») are often called blending functions.

[t should be emphasized at this point that in the
model defined by equation (1), functions are blended
together rather than the defining points as in other
interpolating schemes.

If w,(s) is zero outside some given interval of »
then x;(s) has an effect only in that interval. In
other words, x;(») has only a local effect on F(»).
Note that the differentiability of F(») is determined
by the minimum differentiability of x;(s) and w(s).
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Consider the folilowing case: Let x;(s) be any
function interpolating the points p; through s, and
let w,(s) be zero outside {(b_,4.4,). The function F(»s)
defined in equation (1) will thus be an interpolating
function. Intuitively, this says that if all of the
functions that have an effect at a point, pass through
the point, then the average of the functions uwill pass
through the point.

In general, the points p, are pairs (x,,u;) and in
the parametric space uWe can, Without Jloss of
generality, place &=j,

A polynomial of degree K that passs through K+l
given points will be used as x(s). In general it will
not pass through the other points. I[f the width of
the interval in which {8} is non zero is less than or
equal to K+2 then x,(s) will not affect F(s) outside
the interpolation interval. This means that F(») will
be an interpolating function. On the other hand if
the width of w,(») is greater than k+2 then x(s) will
have an effect on the curve outside the interpolation
interval, F{s}) will then be an approximating
function,

One example is the B-spline where the polynomials
are of degree B8 I[x,(»)=P] and w,{s)=N,(s) the B-spline
basis function. Since JIN,()=1 then F{s)=3PN,(s).
For cubic B-splines the wWidth of N;(8) is & which is
greater than the degree of the polynomial+2.
Therefore the B-spline is approximating.

3. BLENDING FUNCTIONS

Since the blending functions presented above are,
as of now, completely arbitrary uWwe impose some
constraints in order to make them easier to use. We
shall deal only with blending functions that are zero
outside of some given interval, Also ue require that
W, (#) does not vanish for any 4. MWe shall normalize
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W, (8) so that Zw,(s)=1 for all s In addition, since
it is most likely to choose x;(s) as poiynomials which
are infinitely differentiable, F(8) inherits the
differentiability of w(s). Thus a differentiability
constraint must also be imposed on these blending
functions.

1. A blending function already used for
approximating splines is the B-spline basis
function, It has been used for blending together
points (constant functions) to get an
approximating spline. MWe have extended its use
to blend functions together. There are several
ways of generating the basis function [B61.

2. Another function that was tried was a sort of
tapered end wWindow wWith more control over the
differentiability (see figure 3). This is an
even function that is zero for Itl2t, (see figure
1) and the part of the function between t,, and
t, is skew symmetric about t,,. This latter
portion was generated using Beézier curves I[3,5]
for the set of points spaced as indicated in
figure 1. (crosses mark the points) By virtue of

3 X X b
S —» Q 12 1
Figure 1
a property of Bezier curves, the

differentiabiiity of the function depends
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lineariy upon the number of points. The example
In  Figure 1 wili yield a curve of
differentiability 3.

3. The previous two blending functions are
piecedise polynomials. In general we might make
a blending function out of pieces of polynomials
where the ends of the pieces have continhuity and
differentiability constraints.

4. CALCULATING CARDINAL FUNCTIONS

I in eguation (1) we assume x;(s) to be
polynomials of degree K then this eguation can be
reduced to a much simpler form:

(2) F(8) =3, pCy(s)

where the C,(s) are cardinal blending functions and j
is the Knot to which the cardinal function and the
point belong and each Cu{s) is a shifted version of
Cox(8}s  Culd) is a function of both the degree K of
the polynomials and the blending function wi(s):

(3) Cox(8) =250 [T (A7 j+1) Tra (a+1)
i%o
In essence we see that for a polynomial case our
cardinal functions are a blend of Lagrange
polynomials. When calculating Cg(s), wis) should be
centered about K/2.

We have thus shoun a way of creating sets of
cardinal functions that are non-zero in a finite
interval and the differentiability of which can be
easily controlled. This result enables us to reduce
the computation when creating interpclating splines.

5. EXAMPLES

To demonstrate this class of splines uwe have
chosen to blend polynomials using both the B-spline
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and Bézier curves as blending functions. Cur
parameters are:
1. Differentiability
2. Degree of polynomials to be blended
3. The localness of the spline (which determines
whether it interpoliates or approximates)
4, Type of blending function (B-spline or Bezier
curve)

To demonstrate the functions we are using a tuwo
dimensional case F(»)=[X(s),Y(s)]

Figure 2 shous a B-spline blending function with
differentiability 1. The vertical lines represent the
knots' coordinates. Figure 3 shous a Bezier curve
type blending function with differentiability 2 and
width 4. We have already shoun that the blending
together of polynomials is eqguivalent to blending
points with a corresponding cardinal function. If the
blending function of figure 2 is to be applied to
polynomials of degree 1 (i.e. the straight |ines
passing through adjoining points) then the
corresponding cardinal function is shown in figure 4.

The blending function of figure 4 when applied to
the points yield the spline of figure 5. Figure B
shows a cardinal function made for polynomiais of
degree 2 using B-spline blending functions of
differentiability 2. Figure 7 shows the resulting
spl ine,

B. EXTENSIONS

By taking the cartesian cross product of tuwo
splines one can get a  bivariate surface that
interpolates a grid of points,

As an example, we can find the coefficients of
bicubic patches that interpolate a grid of points.

The cardinal function of figure 4 is a combination of
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the B-spline basie function of differentiability 1 and
| inear functions, uwhich yields a cubic.

The formulation for a surface patch using
that cardinal functlon can be shoun to be:

Pn Pe Pa P
[6* 2511 M| P, P,y P,y Pyl MT [+® 27t 117

Pax P32 P33 Paa

_Pdl P42 PAS Paa__

(-1 3 -3 1]
where M=1/2 2 -5 4 -1
-1 B 1 ]

g 2 8 @]

and P, are point values, The patch interpolates the
middle four points. Adjoining patches have continuity
of the first derivative. This can be compared uith

other methods for generating bicubic patches in
[1,2,4].

7. CONCLUSION

We have presented a class of splines in equation
(1) that has some useful characteristics for design
purposes because it is local and interpolating. MWe
think this spline bears further investigation on its
properties.
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s —
INTERVAL WIDTH=3., DIFFERENTIRBILITY=1. TYPE. B-SPLINE
Figure 2

S —
INTERVAL WIDTHed CIFFERENTIABILITY=2. TYPE: BEZIER

Figure 3
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Tr— N

INTERUAL WIDTH=4. DIFFEREMTIABILITY=1. TYPE B-SPLINE
DEGREE OF POLYNOMIAL FOR CARDINAL FUNCTION IS 1

Figure 4

DEGREE OF POLYNOMIAL FOR CARDINAL IS 1
DIFFERENTIARBILITY=1. TYPE: B-SPLINE
WIDTH OF BLENDING FUNCTION=4

Figure B
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___4\)

INTERVAL WIDTH=6. DIFFERENTIABILITY=2, TYPE: B-SPLINE
DEGREE OF POLYNOMIAL FOR CARDINAL FUNCTION IS 2

Figure 6

DEGREE OF POLYNOMIAL FOR CARDINAL IS 2
DIFFERENTIABILITY=2, TYPE: B-SPLINE
WIDTH OF BLENDING FUNCTION=6

Figure 7

326



